
An Empirical Evaluation of Entropy-based

Anomaly Detection

George Nychis

May, 2007

Information Networking Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Hui Zhang

David G. Andersen

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Keywords: anomaly detection, entropy, traffic features, wavelet, signal analysis, correlation

Abstract

There is considerable interest in using entropy-based analysis of traffic feature distributions for

anomaly detection. Entropy-based metrics are appealing since they provide more fine-grained

insights into traffic structure than traditional traffic volume analysis. While previous work has

demonstrated the benefits of using the entropy of different traffic distributions in isolation to de-

tect anomalies, there has been little effort in comprehensively understanding the detection power

provided by entropy-based analysis of multiple traffic distribution used in conjunction with each

other.

We compare and contrast the anomaly detection capabilities provided by different entropy-

based metrics. We consider two classes of distributions: flow-header features (IP addresses, ports,

and flow-sizes), and behavioral features (out- and in-degree of hosts measuring the number of dis-

tinct destination/source IP addresses that each host communicates with). Somewhat surprisingly,

we observe that the entropy of the address and port distributions are strongly correlated with each

other, and also detect very similar anomalies in our traffic trace. The behavioral and flow size

distributions appear less correlated and detect incidents that do not show up as anomalies among

the port and address distributions. Further analysis using synthetically generated anomalies also

suggests that the port and address distributions have limited utility in detecting scan and bandwidth

flood anomalies. Based on our results we derive implications for selecting traffic distributions in

entropy-based anomaly detection.

In support of the thesis and future work, we present the Datapository Anomaly Detection

Testbed, a framework and storage facility for analyzing and developing detection methods, gen-

erating and labeling anomalies, and analyzing traffic features with user provided traffic sets or

publicly available traffic sets in the Datapository database. Through the collaboration of future

users, we hope to expand the set of available detection methods, synthetic anomaly models, and

publicly available traffic data and tools for analysis.

To the Greeks, whose support and dancing gets me through the day.

Acknowledgments

After a year of digging aimlessly at network traffic, I found something! However, finding that

something could not have been possible without the encouragement, time, resources, and effort

many people provided me along the way.

First, I thank my advisor, Hui Zhang, whose teaching and research has been inspirational to me.

The first advice Hui gave me was to ”not get lost in the data.” Those words took on a whole new

meaning after Hui gave me access to terabytes of flow level traffic and I found myself wandering

down paths completely unrelated to anomaly detection. However, Hui’s advice has been golden to

me and has been able to keep me on track when I have wandered astray. I am very grateful for the

opportunity to work with Hui and his continuing support of me.

I don’t remember whether it was what I learned from David Andersen in 15-441: Computer

Networks, his research, or when he literally jumped off a wall outside his office while talking to

me that I decided to ask him to also advise my work. I suspect it was one of the prior, however the

latter is an certainly an unforgettable memory. Dave has sincerely been influential and motivational

to me, and the level of enthusiasm he puts in to everything he does is truly unique and inspirational.

The guidance and ideas he has given me throughout the year on this thesis are irreplaceable. Thank

you.

From the first day Hui introduced me to Vyas Sekar, I have been filled with advice, ideas,

and support which have been invaluable to not only this thesis, but my graduate career. Vyas has

patiently introduced me to the many, and often overwhelming, aspects of research that I continue

to share with those around me. Thank you for your patience, the writing lessons, and the many

things you have taught me.

When I said this work could not have been possible without the time and resources many

people have provided me, I did not specify either were related directly to this thesis. In fact,

the work would not have been possible without my time away from it. Many thanks goes to JJ

Stamatelos and Shawn Robinson who ensured I got my weekly (unfortunately not daily) dosage of

sunlight. I am extremely grateful for the many occasions both of you forceful removed me from

the lab, dropped me off food to eat, and provided me advice on that thing that always seems to get

in the way of the work I enjoy, life. The resources that made this work possible are the cookies

Korina Anna Loumidi freshly baked for me multiple times a week. Although the first batch came

out horribly burnt, my faith in her paid off and I received hundreds of flawless cookies throughout

the past year. Similar thanks goes to Alex, Stacey, Evan, Tharina, George, Joey, Tom, Maria, Hara,

Mike, Brock, Melissa, Dan, Thibaud, Aroon, Doug, and Nick.

My final and most sincere thanks goes to my parents, Peter and Vicki Nychis. This work

7

literally could not have been possible without their support. Although I am only 15 miles from

home, I am sure we would all agree it has felt like hundreds since I have become a graduate student.

The many visits to Oakland, home cooked meals, advice, and support never goes unappreciated. I

love you.

8

Contents

1 Introduction 15

2 Preliminaries 17

2.1 Entropy . 17

2.2 Anomaly Detection Methods . 18

2.3 Traffic Features For Anomaly Detection . 19

3 Measurement Results 21

3.1 Correlations in Entropy Timeseries . 22

3.2 Correlations in Anomaly Deviation Scores . 23

3.3 Overlap in Anomalies Detected . 25

3.4 Understanding Anomalies In-Depth . 26

3.5 Summary of Measurement Results . 29

3.6 Using Synthetic Anomalies . 29

3.6.1 Inbound DDoS Flood . 30

3.6.2 Bandwidth Flood . 31

3.6.3 Network Scans . 32

3.6.4 Port Scan . 34

3.6.5 Summary of synthetic anomaly study . 34

4 Datapository Anomaly Detection Testbed 35

4.1 Architecture . 35

4.1.1 PostgreSQL Backend . 35

4.1.2 Ruby Frontend . 37

4.1.3 Caching . 37

4.1.4 Modularity . 38

4.2 Component Design . 38

4.2.1 Traffic Analysis . 39

4.2.2 Anomaly Detection . 41

4.2.3 Labeling Anomalies . 42

4.2.4 Synthetic Anomalies . 43

4.3 Summary of DP-ADT . 45

9

5 Related Work 47

6 Conclusions 49

10

List of Figures

2.1 Flow level data format used for the analysis including sample records. 19

3.1 Time series of entropy data for February 2005. 24

3.2 Time series of deviation scores computed with the wavelet analysis technique . . . 24

3.3 The number of alarms generated by wavelet detection at different thresholds 25

3.4 Average anomaly overlap score vs. the detection threshold. The lower two lines

represent the degree metrics. 26

3.5 Anomaly scores for inbound DDoS flood . 31

3.6 Anomaly scores for inbound bandwidth flood . 32

3.7 Anomaly scores for a network scan with a single scanning host 33

3.8 Anomaly scores with the network scan having multiple scanners 33

4.1 Database structure for DP-ADT. 36

11

12

List of Tables

3.1 Correlation of entropy data with no measurement anomalies. 22

3.2 Correlation of entropy values for Internet2 traffic captured at the Houston router. . 22

3.3 Pairwise correlations in the wavelet deviation scores. 23

3.4 Difference in correlation values between the heuristic anomaly detection approach

and wavelet based anomaly detection. 23

3.5 Overlap between anomalies with a threshold α = 3. 26

3.6 Labeled traffic anomalies. 27

3.7 Taxonomy of synthetic anomalies used in our evaluation 30

13

14

Chapter 1

Introduction

Researchers have recently proposed the use of entropy based metrics for traffic analysis [36] and

anomaly detection [14, 4, 9, 6, 16, 34]. Entropy based anomaly detection metrics capture more fine-

grained traffic patterns than simple traffic volume based metrics. Previous measurement studies

have shown that entropy based anomaly detection can detect many anomalies that do not manifest

themselves as large deviations in aggregate traffic volume [14].

Many traffic features (e.g., flow size, ports, addresses) have been suggested as candidates for

entropy based anomaly detection. However, there has been little work in understanding the de-

tection capabilities provided by a set of entropy metrics used in conjunction with one another.

Specifically, it is not clear if the different entropy based metrics proposed so far complement each

other in their detection capabilities, or if they provide redundant functionality.

The goal of this paper is to provide a better understanding about the use of entropy-based traffic

anomaly detection using different traffic features. We consider two classes of traffic feature dis-

tributions: flow-header features, and behavioral features. The flow-header features are addresses

(both source and destination), ports (both source and destination) and the flow size distribution

(FSD). These have been suggested as good candidates for detecting worms, scans, and DDoS at-

tacks [14, 6, 13]. The behavioral features are the in and out-degree distributions, where the degree

of an end-host X is the number of distinct IP addresses that X communicates with. The behavioral

distributions capture the structure of the end-host communication patterns.

The primary dataset used in this evaluation is a month-long traffic trace collected within a large

university network having in excess of 60,000 active IP addresses. The trace consists of more

than 2.5 billion flows comprising a total traffic volume greater than 90 TB. Our key analysis and

measurement results are:

• The port and address distributions are very correlated, with pairwise correlation scores greater

than 0.95. The degree distributions and FSD exhibit weak correlations with each other and

with the port/address distributions.

• The anomalies detected by the port and address distributions overlap significantly. In our

dataset, almost all the anomalies detected by these distributions are alpha flows [14]. In con-

trast, the host degree distributions and FSD identify anomalies such as abnormal scanning,

DoS, and peer-to-peer activity that are not detected by the port and address distributions.

15

• We complement the measurement study by evaluating several synthetic anomaly scenarios

using the collected flow data as background traffic. FSD and the degree distributions detect

scanning events whereas the port and address distributions do not. For bandwidth flood and

DDoS events, the port and degree distributions detect only high-magnitude events that would

appear as traffic volume anomalies anyway.

While ports and addresses have been commonly suggested [14] as good candidates for entropy-

based anomaly detection, our results give us reason to question this rationale. Our results also

suggest a natural metric for choosing traffic features for entropy based anomaly detection: select

traffic distributions that are inherently complementary to one another and thus provide different

views into the underlying traffic structure. For example, we find that the behavioral distributions

and the FSD, which are qualitatively different from the port and address distributions, provide dis-

tinct and often better anomaly detection capabilities. These complementary distributions can detect

anomalies embedded in one another. As a specific example, we found one instance of two anoma-

lies occurring concurrently – one alpha flow detected by the port and address distributions, and an

unrelated peer-to-peer anomaly detected by FSD alone. Our results thus suggest that the selection

of traffic distributions in entropy-based anomaly detection should be made more judiciously, and

in particular we should look beyond simple port and address based distributions.

The rest of the paper is organized as follows. Section 2 sets up the preliminary definitions and

anomaly detection methods we use in our analysis. Section 3 presents our measurement results.

We also augment our measurement study using synthetic anomalies in Section 3.6. We conclude

in Section 6 discussing the implications of our measurement results after reviewing related work

in Section 5.

16

Chapter 2

Preliminaries

First, we define the notion of normalized entropy used for anomaly detection. Next, we briefly

describe the timeseries analysis techniques for anomaly detection that we borrow from existing

work. We also introduce the different traffic distributions we evaluate.

2.1 Entropy

Let X denote a random variable representing the distribution of values a particular traffic feature

(e.g., the source address or destination port of a flow) can take. Let x1 . . . xN denote the range of

values that X can take, and for each xi let p(xi) represent the probability that the random variable

X takes the value xi, i.e., p(xi) = Pr[X = xi]. The entropy [30] of the random variable X is

defined as1:

(2.1) H(X) = −

N∑

i=1

p(xi) log p(xi)

Normalized Entropy: Since some items may not appear during a single measurement interval we

define N0 to be the number of distinct items that are actually present in the given measurement

interval. Intuitively, the entropy is a measure of the diversity of the data coming over the stream.

The entropy attains its minimum value of zero when all the items coming over the stream are

the same and its maximum value of log(N0) when each item in the stream appears exactly once.

Across measurement intervals we might observe a different number of distinct items (N0). Thus,

we normalize H to be between zero and one by computing the normalized entropy: H/ log N0.

This normalization measures the relative randomness within each measurement interval, and allows

us to quantitatively compare entropy values across time. For the remainder of the discussion we

will use this definition of normalized entropy.

1All logarithms in this paper are to the base 2 and we define 0 log 0 = 0

17

2.2 Anomaly Detection Methods

We use two independent methods for timeseries anomaly detection. We do so primarily to avoid

any biases arising from a particular anomaly detection technique. Our goal is not to evaluate the

timeseries analysis methods themselves; rather, our goal is to demonstrate that our observations

regarding the properties of entropy-based anomaly detection are independent of the underlying

anomaly detection technique used.

Wavelet analysis: Barford et al. propose wavelet analysis for detecting anomalies in traffic time-

series data [3]. Their technique treats measurement data (e.g., number of packets per five minute

interval) as a generic timeseries signal. Using wavelet decomposition, the timeseries is then decom-

posed into different sub-components consisting of the low, mid-range, and high-frequency compo-

nents. The insight behind wavelet analysis is that the low frequency components capture expected

traffic trends (e.g., the mean and the diurnal traffic patterns), while the mid to high frequency com-

ponents capture instantaneous variations in the timeseries (i.e., deviations and anomalies from the

expected patterns).

After this decomposition, the mid-range and high frequency components are normalized to

have unit variance. Next, they compute the local variability of the high frequency and mid fre-

quency components using sliding windows of different sizes. The size of the sliding window de-

termines the duration of anomalies that can be detected. The local variability of the high frequency

and mid frequency parts are then added together. The final anomaly detection step is a simple

thresholding function applied to this combined signal. A sliding window of size 6 is used which

corresponds to a 30 minute period given that each data point represents a five minute interval.

Heuristic Threshold-based detection: As an alternative to wavelet based detection, we consider

a heuristic technique adapted from prior work [26, 29]. The high-level goal is to estimate the mean

and standard deviation of the timeseries signal using historical data. For each future observation,

we compute a deviation score: Score = |Observation−Mean|
Stddev

. This score captures how far away from

the mean value a particular observation is, expressed relative to the standard deviation. We flag an

anomaly whenever any observation has a score greater than some threshold α.

If the mean and standard deviation are calculated with historical traffic data that contain large

anomalies, then these values are likely to over-estimate the true statistics. Therefore, this heuris-

tic may miss anomalies in future observations, because the model of traffic accommodates more

anomalies than it should. To avoid this bias, we introduce an iterative cleaning technique for learn-

ing the mean and standard deviation given possibly noisy training data. The approach works as

follows. In each iteration, we compute the mean and the standard deviation. For the current itera-

tion, we find anomalous datapoints, i.e., those that are greater than α = 3 standard deviations away

from the mean. We remove these anomalies from consideration for further iterations. The iteration

continues until the mean and standard deviation obtained are stable, meaning that the values do

not differ significantly across subsequent iterations. In our experiments, we find that this process

usually terminates in 4-5 iterations and drops fewer than 3% of the data points.

18

StartTime(sec) EndTime(sec) Proto Left_IP:Port Flow_Dir Right_IP:Port Src_Pkts Dst_Pkts Src_Bytes Dst_Bytes
 12802 12803 UDP 244.0.0.1:3180 -> 128.2.240.216:139 6 2 372 120
 12820 12824 TCP 0.2.122.42:9478 -> 109.173.146.198:22 29 30 1566 3772
 12824 12824 TCP 130.20.143.124:80 <- 0.2.122.42:2118 2 1 846 60
 12824 12825 TCP 0.2.122.42:2341 -> 109.173.146.198:22 31 40 1662 4201
 12825 12825 UDP 244.0.0.1:2718 -> 0.2.122.42:139 6 3 372 150

Figure 2.1: Flow level data format used for the analysis including sample records.

2.3 Traffic Features For Anomaly Detection

In our study we compare seven traffic distributions. Five of these are obtained from flow-header

features: source address, destination address, source port, destination port, and the flow size distri-

bution (FSD). The remaining two are based on structural properties of inter-host communication

behavior: the in-degree and out-degree distribution across hosts, where the degree of an end-host

X is defined as the number of distinct IP addresses that X communicates with.

Prior work on using flow-header features in traffic analysis uses unidirectional flow information

commonly exported by most routers [21, 23]. Our dataset contains bidirectional flow records [2];

we explicitly convert each bidirectional flow record into two unidirectional flows. Consider Fig-

ure 2.1 as an example. The first flow entry would be interpreted as two flows, one flow was from

244.0.0.1 to 128.2.240.216 with a total of 6 packets, the other flow was from 128.2.240.216 to

244.0.0.1 with a total of 2 packets.

The behavioral metrics use directional traffic flows to distinguish between incoming and out-

going connections for a single host.

Feature examples using Figure 2.1:

• Address 0.2.122.42 sourced 65 packets and was the destination of 77 packets

• Port 22 sourced 70 packets and was the destination of 60

• The traffic volume of the example was 74 source packets and 76 destination packets

• 3 hosts had an in degree of 1, 2 hosts had an out degree of 1

• 2 flows had a flow size of 6 packets

Computing normalized entropy:

• Addresses: For each source (destination) IP address xi, we calculate the probability

p(xi) =
Number of pkts with xi as src (dst) address

Total number of pkts

The normalization factor is log(N), where N is the number of active source (destination)

addresses observed during the measurement interval.

19

• Ports: For each source (destination) port xi, we calculate the probability:

p(xi) =
Number of pkts with xi as src (dst) port

Total number of pkts

The normalization factor is log(P), where P is the total number of distinct active source

(destination) ports for the interval.

• Flow size distribution: For each actual value that flow size (measured in packets) takes, we

calculate the probability:

p(xi) =
Number of flows with flowsize xi

Total number of flows

The normalization factor is log(F), where F is the number of distinct flow sizes we observe

within the measurement interval.

• Behavioral distributions: For a host X , the out-degree is the number of distinct IP addresses

that X contacts, and the in-degree is the number of distinct IP addresses that contact X .

Each X is an active internal IP address inside the network under consideration (e.g., in our

dataset we only consider hosts inside the university): these are the only hosts for which we

have a complete view of both incoming and outgoing traffic. For each value of out-degree

(in-degree) xi, we calculate the probability

p(xi) =
Number of hosts with out-degree xi

Total number of hosts

The normalization factor for the out-degree distribution is log(D), where D is the number of

distinct out-degree (similarly in-degree) values observed during the measurement interval.

20

Chapter 3

Measurement Results

Dataset: Our analysis is based on Argus [2] flow level data captured at a core router within

Carnegie Mellon University1. The data was captured in February 2005. The data set contains

traffic to and from over 100,000 active IP addresses consisting of a total aggregate traffic of 92 TB

over approximately 2.5 billion flows. IP addresses in the dataset were anonymized [35]. Because

the anonymization preserves a one-to-one mapping between the unanonymized and anonymized

IP address for the entire trace, the anonymization does not affect our analysis (traffic feature dis-

tributions remain identical after anonymization). Application ports were not anonymized.

The dataset is split into five minute non-overlapping intervals. Each bin consists of flows

that completed within the interval. Each flow record includes the connection time, the protocol

used, the connection state, flow direction, and source/destination pairs for all of the following: IP

address, port, packet count, and byte count. The format of the data with some example flow records

is shown in Figure 2.1. As discussed earlier, to obtain the in- and out-degree distributions, the flow

record must indicate the flow’s direction. However, in some cases the directionality is not evident

from the flow record (e.g., UDP flows, long-lived TCP flows that extend beyond the flow timeout).

In such cases, we use application port numbers to infer flow direction2. If the directionality is still

ambiguous, we arbitrarily select the left host in the flow record to be the originator of the flow.

Roadmap: Our measurement results are structured as follows:

• To understand if different traffic feature distributions are structurally correlated, we compute

pair-wise correlation coefficients for the different entropy timeseries values in Section 3.1.

• We analyze if the correlations from Section 3.1 also translate into the space of anomalies by

computing pair-wise correlation coefficients for the anomaly deviation scores in Section 3.2.

1The router observes all traffic between university hosts and external Internet hosts. Additionally, it also routes a

significant fraction of internal inter-departmental traffic
2The rationale behind using the port numbers for determining the directionality of a flow is the following. If a host

is running a well-known application service, then it is likely to be the server-host in the connection. Since the client

that initiates a connection to the server in the majority of client-server transactions we assume that the host that does

not use the well-known port is the originator of the connection.

21

• We analyze the overlap between the set of anomalies detected by the different traffic fea-

tures in Section 3.3 to understand if the different entropy metrics provide similar detection

capabilities or if they differ significantly.

• We use a heuristic approach for identifying the traffic flows contributing to the anomalies in

Section 3.4. By analyzing the anomalous flows, we explain why some of the anomalies are

detected by several entropy metrics, while other anomalies are unique to specific metrics.

We discover several interesting anomalies, including possible botnet activity, the arrival of a

P2P “supernode”, and a possible outbound spoofed DoS attack.

3.1 Correlations in Entropy Timeseries

Table 3.1 shows the pairwise correlation scores between the entropies of different distributions.

We find strong correlations (> 0.95) between the address and port distributions. The remaining

metrics show moderate (e.g., FSD and in-degree) to no correlation. Figure 3.1 shows the entropy

timeseries values over the entire month-long trace. The visual confirmation of the correlations

is just as striking as the values themselves. The degree-based entropies show more short-term

stochastic variation than the traffic feature distributions and as such the entropy of the host be-

havioral distributions do not appear strongly correlated with the other features. Additionally, we

observe that many of the spikes and deviations in the timeseries plots are also highly correlated.

We will revisit these anomalies in the subsequent discussions.

OutDeg SrcAddr DstAddr SrcPort DstPort FSD

InDeg 0.102 0.100 0.097 0.000 0.007 0.414

OutDeg - -0.034 -0.033 -0.054 -0.015 -0.018

SrcAddr - - 0.994 0.962 0.956 0.307

DstAddr - - - 0.966 0.969 0.286

SrcPort - - - - 0.989 0.171

DstPort - - - - - 0.181

Table 3.1: Correlation of entropy data with no measurement anomalies.

DstAddr SrcPort DstPort FSD

SrcAddr 0.988 0.793 0.819 0.214

DstAddr - 0.761 0.834 0.253

SrcPort - - 0.848 0.087

DstPort - - - 0.032

Table 3.2: Correlation of entropy values for Internet2 traffic captured at the Houston router.

To confirm that these results are not an artifact of our dataset, we perform similar analysis using

data from the Internet2 [7] backbone. We use two weeks (Dec. 1-14, 2006) of flow traces collected

from the eleven backbone routers, and compute the entropy of the flow-header distributions. The

22

correlations for flow data from the Houston router are shown in Table 3.2. We do not compute the

degree based metrics because the sampled Netflow traffic is not directional. The correlation scores

shown for the single router are qualitatively representative of other routers. This confirms that the

strong correlations we observe are not unique to our dataset.

3.2 Correlations in Anomaly Deviation Scores

Next, we explore if the correlations in the entropy timeseries values also extend into the anomaly

space. We first assign anomaly deviation scores to each data point using the techniques described

in Section 2.23.

OutDeg SrcAddr DstAddr SrcPort DstPort FSD

InDeg 0.248 0.199 0.188 0.185 0.156 0.507

OutDeg - 0.179 0.165 0.143 0.122 0.396

SrcAddr - - 0.991 0.971 0.964 0.319

DstAddr - - - 0.970 0.971 0.300

SrcPort - - - - 0.986 0.256

DstPort - - - - - 0.220

Table 3.3: Pairwise correlations in the wavelet deviation scores.

Table 3.3 shows that the port and address distributions are as strongly correlated in terms of

the deviation scores as they are in terms of the raw entropy values. Interestingly, the behavioral

features become slightly more correlated to the other metrics. For example, the correlation between

out-degree and FSD increases by 0.414 (Table 3.4). We hypothesize the reason for this increase is

that the in and out-degree distributions show more stochastic variations than the other distributions.

Thus, they tend to be uncorrelated in terms of the timeseries values. However, the wavelet anomaly

detection technique removes these noisy variations, and they become more correlated in terms of

the deviation scores.

OutDeg SrcAddr DstAddr SrcPort DstPort FSD

InDeg 0.146 0.100 0.091 0.185 0.149 0.093

OutDeg - 0.213 0.198 0.197 0.137 0.414

SrcAddr - - -0.003 0.009 0.008 0.012

DstAddr - - - 0.003 0.002 0.014

SrcPort - - - - -0.002 0.085

DstPort - - - - - 0.039

Table 3.4: Difference in correlation values between the heuristic anomaly detection approach and wavelet

based anomaly detection.

Threshold based detection also produces similar results. We present the difference from corre-

lations of threshold deviation scores to wavelet based deviation scores in Table 3.4. Our goal is not

3For wavelet analysis, the score assigned is the magnitude of localized variance computed over a sliding window

of size 6.

23

0.2
0.4
0.6
0.8

E
nt

ro
py

in-degree

0.2
0.4
0.6
0.8

E
nt

ro
py

out-degree

0.2
0.4
0.6
0.8

E
nt

ro
py

FSD

0.2
0.4
0.6
0.8

E
nt

ro
py

source addresses

0.2
0.4
0.6
0.8

E
nt

ro
py

destination addresses

0.2
0.4
0.6
0.8

E
nt

ro
py

source ports

0.2
0.4
0.6
0.8

E
nt

ro
py

destination ports

 10
 30
 50
 70
 90

feb-4 feb-8 feb-12 feb-16 feb-20 feb-24

pa
ck

et
s

(M
) traffic volume

Figure 3.1: Time series of entropy data for February 2005.

 2
 4
 6
 8

 10
 12

S
co

re

A B C D E F G H I J K L MNO P Q R

in-degree

 2
 4
 6
 8

 10
 12

S
co

re out-degree

 2
 4
 6
 8

 10
 12

S
co

re FSD

 2
 4
 6
 8

 10
 12

S
co

re source addresses

 2
 4
 6
 8

 10
 12

S
co

re destination addresses

 2
 4
 6
 8

 10
 12

S
co

re source ports

 2
 4
 6
 8

 10
 12

S
co

re destination ports

 2
 4
 6
 8

 10
 12

feb-4 feb-8 feb-12 feb-16 feb-20 feb-24

S
co

re traffic volume

Figure 3.2: Time series of deviation scores computed with the wavelet analysis technique

24

to show similarities or differences in the anomaly detection methods themselves, but that regard-

less of the detection method chosen, the patterns of correlation across the entropy based metrics

are unaffected. Table 3.4 confirms that there is no bias introduced by choosing one anomaly detec-

tion technique over another. The only qualitative difference we observe between the two methods

is in the behavioral features. where the significant positive correlation differences from threshold

to wavelet detection confirms wavelet analysis’ ability to remove noise and diurnal effects. The

negligible differences of correlation in deviation scores between the other metrics and methods

illustrates that the results are independent of the detection method. Hence, we only present the

results from wavelet based detection in the rest of the paper.

3.3 Overlap in Anomalies Detected

Our next goal is to understand the overlap between the detection capabilities provided by different

entropy metrics. This helps us quantify the extent to which the different entropy metrics provide

similar anomaly detection functionality.

 10

 100

 1000

 10000

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 a

la
rm

s

Detection threshold

Wavelet Generated Number of Alarms

degree in
degree out

flow size distribution
addresses src
addresses dst

ports src
ports dst

Figure 3.3: The number of alarms generated by wavelet detection at different thresholds

We generate anomalies by specifying a detection threshold α, and flagging any observation

that has an anomaly deviation score greater than the threshold α. Figure 3.3 shows the number

of anomalies identified for each of the entropy metrics over the entire month as a function of the

threshold α. We observe that the behavioral metrics and FSD generate 2× more alarms than the

port and address distributions.

After generating the alarms we assign an anomaly overlap score as follows. We construct

a timeseries of anomaly incidents for each entropy metric, where a timeslot (five minute bin) is

assigned a 1 if there is an anomaly reported and a 0 if there is no anomaly. Thus, we have a vector

of 0-1 values representing the entire sequence of anomalies for a entropy metric. We compute the

correlations for every pair of (binary) anomaly vectors. By construction, two metrics with the exact

same set of anomalies have a correlation score of 1, and metrics that have the exact opposite set of

25

OutDeg SrcAddr DstAddr SrcPort DstPort FSD

InDeg 0.137 0.197 0.183 0.154 0.126 0.354

OutDeg - 0.072 0.071 0.026 0.023 0.213

SrcAddr - - 0.946 0.864 0.854 0.141

DstAddr - - - 0.858 0.891 0.123

SrcPort - - - - 0.934 0.087

DstPort - - - - - 0.060

Table 3.5: Overlap between anomalies with a threshold α = 3.

alarms have a correlation score of -1. We generate these pairwise overlap scores for the anomaly

vectors using different values of α.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
or

re
la

tio
n

sc
or

es

Wavelet detection threshold

Anomaly Overlap Score

SrcAddr
DstAddr
SrcPort
DstPort

FSD
InDeg

OutDeg

Figure 3.4: Average anomaly overlap score vs. the detection threshold. The lower two lines represent the

degree metrics.

Table 3.5 presents the overlap scores for α = 3. We notice that the correlation of devia-

tion scores translates to overlap of anomalies in the detection space. Furthermore, the overlap is

independent of the value of α. Even at very low deviation scores, where thousands of alarms are

generated, the alarms are just as correlated as using larger thresholds. For clarity, we do not present

the full correlation matrices for different thresholds but instead report the average for each entropy

metric as a function of the threshold α in Figure 3.4. The figure illustrates that the correlations in

alarms stay relatively constant across all thresholds.

3.4 Understanding Anomalies In-Depth

Why do the anomalies detected by the port and address distributions overlap and why do FSD and

the degree distributions provide unique detection capabilities? To answer these questions we use a

heuristic approach to identify for each anomaly event, the set of traffic flows that contribute to the

26

Anomaly Type Affected Metrics Labels

Alpha Flows (Botnet activity) Addresses, Ports B, F-H, K-N, P

Scans FSD A, D

P2P Supernode Activity FSD O

Spoofed DoS Degree C, E, I

Measurement Outage Inconsistent J, Q, R

Table 3.6: Labeled traffic anomalies.

particular anomaly. Once we identify the actual anomalous flows, we explain the effect these have

on different traffic distributions, and why these manifest as anomalies in specific traffic features.

We discuss eighteen events, indicated by alphabetical labels in Figure 3.2, and summarized in

Table 3.6. (Some anomalies span multiple timeslots; we cluster anomalies close in time into a

single event.) Among these, we find three measurement anomalies that do not exhibit any com-

mon characteristics among the distributions. We discover several alpha flows [14] that explain the

strong overlap between the anomalies detected by the address and port distribution. The remaining

anomalies are unique to FSD and the in-degree distribution. Through our labeling methodology,

we also discover an embedded anomaly events which would have gone undetected using volume

based detection.

Labeling Method: In the absence of ground truth for our dataset, we develop a semi-automated

approach for discovering anomalous traffic flows. While our approach is a heuristic, it helps us

explain more than 90% of the observed anomalies.

We analyze the top-k contributors within each distribution (e.g., destination address, in-degree)

for the timeslots when the anomalies occur. The rationale behind this approach is that during

an anomaly, the top few contributors to specific traffic distributions change significantly. If some

discrepancy is detected in the top-k value (e.g., if a new value enters the top-k, or if the contribution

of the top few values changes significantly), it is treated as a possible cause of the anomaly. The set

of traffic flows associated with this discrepancy are then identified and explicitly removed. After

the suspected anomalous flows are removed from the trace, the entropy and wavelet scores are

recomputed using the remaining traffic flows. If the anomaly subsides, we are confident that these

anomalous flows did indeed cause the original anomaly.

To illustrate, consider a large bandwidth flood destined to host X . Since this host receives

significantly more traffic than other hosts, X is likely to appear in the top-k of the destination

address distribution. The flows having X as the destination host are then removed, and the entropy

and wavelet values are recomputed. If the deviation scores for the new entropy values decrease

below the detection threshold α, the bandwidth flood to X is considered the cause of the original

anomaly.

Measurement Anomalies: Events J , Q, and R are measurement anomalies, characterized by few

to no flow records in our dataset. The measurement anomalies do not show any consistent behavior

across the different traffic features. This is illustrated in event R where all metrics are able to detect

the anomaly using a threshold α = 4 except for the out-degree. As measurement anomalies are not

interesting from a traffic structure point of view, they are not further discussed.

Alpha-Flows (likely botnet activity): In alpha flows, a small number of ports and addresses (both

27

source and destination) dominate the total traffic volume [14]. This greatly decreases the entropy

of all the address and port distributions.

Analyzing the flow records, we suspect that these arise due to botnet activity: compromised

university hosts being used to attack external targets. In events F − H and L − N , we observed a

large volume of UDP traffic destined to a single external host on popular application ports (80,53).

These flows are suspicious for three reasons. First, the direction and nature of the traffic is suspi-

cious (normally in these applications we expect more traffic to client hosts, not from client hosts).

Second, there is no response traffic from the destination host (it is either overwhelmed or it is drop-

ping these packets). Third, we also found a small amount of TCP traffic on port 6667 (IRC) to and

from the sources of the alpha flows just prior to the onset of the alpha flow. The IRC traffic sug-

gests the activity is possibly botnet related (botnets commonly use IRC for command and control

channels).

Additionally, eight of these alpha flow incidents share a source IP with another anomaly sug-

gesting that the same compromised host was being used in multiple attacks. This has implications

on detection as using entropy catches the hosts engaging in malicious behavior which removing

them based on the alarms would prevent the future events seen sharing sharing infected hosts ob-

served in the trace.

Event H is particularly interesting in terms of our heuristic for discovering anomalous flows,

as it consisted of two independent alpha flow events. Our initial analysis revealed one alpha flow.

However, after observing that the anomaly persisted after temporarily removing the initial alpha

flow event, we discovered the second alpha flow as well.

In our dataset, the alpha flows are the only anomalies that any of the port and address distribu-

tions detect. Further, these anomalies are detected by all the port and address distributions. This

implies, at least in our dataset, that using all the port and address distributions in conjunction pro-

vides no marginal benefits over using just one of these distributions. Not only do addresses and

ports detect the events, but simple volume based detection could have been effective in detecting

the alpha flows observed in the trace as each produces between a 25% and 200% increase in traffic.

This implies reduced utility in monitoring ports and addresses, which will also seen in the synthetic

anomalies.

Peer to Peer Supernode Activity: Removing the alpha flows for event N from the traffic does not

eliminate a series of concurrent FSD anomalies (collectively labeled O). Further analysis of the

FSD anomaly reveals that it was caused by an internal host being recruited as a “supernode” in the

Kazaa network [10]. During the event, many hosts connect to this supernode creating a significant

number of small flows, which sharply decreases the entropy of the FSD.

By monitoring just the port and address distributions it would not have been possible to deter-

mine that there are two separate anomalous events. This suggests the need to consider distributions

that capture different structural properties of the underlying traffic.

Scan Activity: During event A, a single internal host scanned more than 350,000 unique external

hosts. The scanner used a fixed source port of 666. The destinations ports of the scan are between

0–1024, and each of the 350,000 hosts is scanned exactly once. As there are a large number of

small flows, FSD detects this scanning. The source address and port distributions do not detect the

behavior, as the source does not generate enough packets to bias these distributions significantly.

28

Since only one internal host is involved, the degree distributions are unaffected.

Event D is a more traditional (outbound) port scan, with a single internal host scanning nu-

merous external hosts on multiple ports. FSD alone detects the scan while the other traffic features

remain unaffected.

Contrary to conventional wisdom, port and address distributions do not show significant devi-

ations for the scanning anomalies in our data. FSD detects such abnormal scanning activity which

we revisit using synthetic anomalies.

Possible DoS using spoofed addresses: In anomalies C, E, and I , a very large number of “hosts”

(we speculate that these are spoofed) have out-degree 1. This decreases the entropy of the out-

degree distribution (demonstrating its uniqueness and little overlap). The majority of the “hosts”

with out-degree 1 connect to the same external destination on port 6667. The set of source ad-

dresses in these flows spans the entire /16 of the university address space. Oddly, the source ports

of the flows fall within a small range of port numbers. Also, the destination host sends a single

packet response, but the flows seem to terminate abruptly. This leads us to believe that an internal

host may be sending attack traffic with spoofed source addresses (within the same subnet) to avoid

egress filtering4.

The presence of these anomalies unique to the out-degree reiterate the need to choose distribu-

tions that provide a different view in to the structure of flow level traffic.

3.5 Summary of Measurement Results

• The entropies of the port and address distributions (both source and destination) are strongly

correlated.

• The behavioral distributions (in- and out-degree) and the FSD exhibit low correlations with

each other and with the port and address distributions.

• The correlations in the deviation scores mirror the correlations in the entropy values using

both anomaly detection methods.

• The anomalies detected by port and address distributions overlap significantly. Further anal-

ysis reveals that most of these are alpha flows.

• In contrast, the degree distributions and FSD detect unique anomalies that are not captured

by other distributions. For example, FSD detects interesting scan and P2P behaviors, even

when the anomalies are embedded in larger alpha flow anomalies.

3.6 Using Synthetic Anomalies

In this section, we use synthetically generated anomaly events to complement our measurement

results. Table 3.7 presents a taxonomy of the different types of synthetic anomalies we evaluate.

4Since we only have anonymized flow level traces, we could not further validate this hypothesis.

29

Anomaly Type SrcAddr DstAddr SrcPort DstPort FlowSize

Inbound DDoS Flood Random Fixed Random Fixed Fixed (10 Kbps), 1 flow per packet

B/W Flood Random Fixed Random Fixed Random (300-400 Kbps), 1 flow per host

Single Scanner Fixed Random Random Fixed 1-3 packets (10% response rate)

Multiple Scanners Random Random Random Fixed 1-3 packets (10% response rate)

Port Scan Fixed/Random Fixed Random Fixed 1-3 packets (10% response rate)

Table 3.7: Taxonomy of synthetic anomalies used in our evaluation

For each type of anomaly, we are interested in three questions:

1. Can the anomaly be detected using any of the feature distributions?

2. Which feature distribution is most effective for detection?

3. How sensitive is the detection to the magnitude of the anomaly?

To understand the sensitivity of the detection metrics we vary the scale of the anomaly using

a specific control parameter (e.g., number of source hosts involved in a DDoS or scan attack). In

the case of the DDoS and bandwidth floods, we are also interested in comparing the merits of

entropy-based detection to simply volume based detection. Specifically, we want to identify the

smallest anomaly for which entropy-based detection becomes feasible, and reason whether at this

magnitude volume-based analysis would have sufficed.

We set the duration of the anomaly to be a single five-minute timeslot. For each experiment

(i.e., given an anomaly type and the anomaly magnitude), we introduce the anomaly at 50 semi-

randomly selected locations in the month-long trace (semi-randomly because we ensure that these

locations do not overlap with previously discovered traffic anomalies in the dataset). Each data-

point in the following results represents the mean anomaly deviation scores (using wavelet-based

detection) over the 50 experiments; the standard deviations were small and not shown.

For brevity we only consider inbound anomalies: the source addresses involved in the inci-

dents are outside the university and the destination addresses are inside the university. The results

for outbound anomalies are qualitatively similar (except that the roles of in and out-degree get

reversed).

3.6.1 Inbound DDoS Flood

Finding: FSD detects DDoS floods with a 6× lower magnitude than port and address distribu-

tions.

A DDoS event is characterized by a single destination address receiving a large volume of

single-packet flows (to overwhelm both the bandwidth and processing capacity of the server and

routers). Figure 3.5 shows the anomaly scores as a function of the number of hosts participating

in the DDoS attack. Each attack source generates 10 kilobits per second of attack traffic, using a

fixed packet size of 57 bytes and a single flow per packet. The attack flows are destined to port

80 on a randomly chosen host inside the university. We have repeated the experiments varying

the destination port, and the choice of destination address (picking a high-volume, random, and

low-volume host) and found similar results.

30

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000

W
av

el
et

 s
co

re

Number of participating hosts

Synthetic Inbound DDoS

FSD
SrcPorts
DstPorts
DstAddr
SrcAddr
OutDeg

InDeg

Figure 3.5: Anomaly scores for inbound DDoS flood

With just 100 hosts generating 10 kilobits per second of attack traffic each within a five minute

interval, there would be 100hosts ∗ 300sec ∗ 10Kbps/57bytes ≈ 650, 000 flows of size 1. Thus,

the change in the FSD can easily detect the anomaly even with a small number of participating

hosts. The destination port and destination address distributions detect the anomaly (with the

score exceeding the threshold α = 3) only when more than 600 attack sources are involved. The

anomaly is also detected by source ports since the distribution of traffic across source ports appears

random (with 600 hosts participating the normalized source port entropy exceeds 0.97). The degree

distributions are unaffected by this anomaly.

3.6.2 Bandwidth Flood

Finding: Destination port and address can detect the anomaly. But, the magnitudes of the anoma-

lies that can be detected are large enough that simple volume-based analysis would suffice.

In a bandwidth flood, a small number of high-bandwidth hosts send traffic to a single destina-

tion. The key differences with respect to the DDoS attack are that the number of hosts involved is

an order of magnitude smaller than the DDoS, and that each attack flow is a single high-volume

flow. (All the attack packets from a single source have the same source port and thus get aggregated

into a single flow, as opposed to a DDoS attack where each packet has a random source port.)

We vary the number of hosts involved in flooding a single target IP address. The rate of traffic

from each host varies uniformly in the range of 300 to 400 Kilobits per second with a fixed packet

size of 57 bytes. The flood is targeted against a single destination host (chosen at random within

the university) on a specific destination port (e.g., port 80 on a webserver). Again, the results were

independent of the choice of port and destination host.

Figure 3.6 shows that the behavioral features, FSD, source port, and source address are unaf-

fected. Since each source generates a single flow (and the size of each flow is random), FSD is

not effective at detecting this anomaly. As expected, destination ports and addresses exhibit the

greatest deviation. However, a simple back-of-envelope calculation suggests that traffic volume

can detect this anomaly as well. With 40 hosts (the smallest magnitude that exceeds a detection

threshold α = 3 using destination ports) sending 300 Kilobits per second each, an additional 8 mil-

31

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200

W
av

el
et

 s
co

re

Number of participating hosts

Synthetic Inbound Bandwidth Flood

DstPorts
DstAddr
SrcPorts
SrcAddr

FSD
OutDeg

InDeg

Figure 3.6: Anomaly scores for inbound bandwidth flood

lion packets are introduced. This is roughly 25% of the peak aggregate traffic volume we observe

per-day. This suggests that this flood will be detected by simple volume-based anomaly detection

as well.

3.6.3 Network Scans

Scan traffic is usually made up of a large number of flows to a specific destination port that is

being targeted for exploits. We consider two types of scanning activity: a single scanning host

trying to scan the entire university address space, and distributed scanning activity arising from a

set of random source addresses. One of the reasons for selecting addresses and ports as candidate

traffic features is that such scan traffic typically affects these distributions. However, we find that

these metrics are ineffective for detecting scanning activity. In contrast, FSD and in-degree detect

even low magnitude scanning activity.

We set the destination port for the scans to be 445 (associated with many known vulnerabil-

ities [20]). The results are independent of the choice of destination port. To closely model the

observed properties of real scanning activity (e.g., what fraction of hosts respond, what are the

flow sizes of the probes and responses), we sample 10,000 inbound scan flows to port 445 from the

traffic trace. We observe that scans receive responses to probes approximately 10% of the time,

and that in these cases the probe flows have a flow size of 3 packets, else they are single-packet

flows (just a SYN packet).

Single Scanner

Finding: Entropy-based anomaly detection using traffic feature distributions cannot detect single

scanners with scan rates less than 200 scans per second.

Figure 3.7 shows that a host scanning at 200 hosts per second goes undetected with the entropy

metrics. FSD shows the largest deviation, but even it does not generate an anomaly score above 1.

Among the other distributions, we observe slight changes in the in-degree (the entropy decreases

because there is a sudden increase in number of hosts with in-degree 1) and destination addresses

32

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

W
av

el
et

 s
co

re

Scan rate (hosts/second)

Synthetic Inbound Network Scan

FSD
SrcPorts
OutDeg

DstPorts
DstAddr
SrcAddr

InDeg

Figure 3.7: Anomaly scores for a network scan with a single scanning host

(the entropy increases since many hosts receive a small volume of traffic and the distribution be-

comes closer to being uniform). However, the deviations are not large enough for detection.

For detecting such isolated scan activity, more fine-grained per-host analysis (e.g., flag any host

contacting more than X unique destinations in Y seconds [1]) and incorporating other aspects of

scanning behavior (e.g., failed connections [8]) are necessary.

Multiple Scanners

Finding: FSD and in-degree detect scan/worm activity with aggregate rates an order of magnitude

lower than port and address distributions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

W
av

el
et

 s
co

re

Number of infected hosts scanning at 30 hosts/sec

Synthetic Inbound Coordinated Network Scan

InDeg
FSD

SrcPorts
DstPorts
DstAddr
SrcAddr
OutDeg

Figure 3.8: Anomaly scores with the network scan having multiple scanners

Such activity is representative of coordinated network scans and worms. In a coordinated scan,

multiple hosts (e.g., part of a botnet) scan a particular network. Each participating host generates

scan at a low rate – this can cover the entire address space quickly without incurring blacklisting

(e.g., hosts generating more than a threshold X scans per second might be blacklisted by ID-

Ses [1]). (The outbreak of worm activity produces identical behavior. With a random scanning

33

worm, the probability of an incoming scan is InfectedHosts ∗ ScanRate ∗
InternalAddressSpace

TotalIPAddressSpace
.) We

fix the scan rate to 30 hosts per second, and vary the number of hosts generating scanning activity.

As in the single scanner case, we assume a 10% response rate.

Figure 3.8 shows that in-degree and FSD exhibit the strongest deviations. Even with a small

number (less than 100) scanners, we observe anomaly scores greater than 9 and 6 using in-degree

and FSD respectively. Intuitively, we expect the destination port distribution to be effective at

picking such scanning activity since port is invariant across the scan traffic. Surprisingly, the des-

tination port distribution does not detect the scanning activity even when there are 1000 scanners.

FSD and in-degree have another favorable property: they detect scans independent of the ports

used by the scan traffic. This implies that even when the vulnerability exists on an application

associated with a lot of normal traffic, FSD and in-degree still detect the abnormal scanning activ-

ity. However, the destination port distribution misses this scanning activity since the change in the

traffic on the popular application port relative to the normal traffic will be negligible.

3.6.4 Port Scan

Finding: FSD alone is effective for port scan detection.

We also explore several synthetic port scans. The results are very similar to the case of network

scans, with the only exception being that the degree-based metrics are ineffective. A single scanner

with a moderate scan rate (30 scans per second) cannot be detected by any of the entropy metrics

(as in Figure 3.7). With an increased scan rate (> 1000 scans per second) or with multiple scanners,

FSD is the only metric that detects the port scan. The port, address, and degree distributions remain

unaffected by the port scanning activity even with a large number of scanners or a high scan rate.

3.6.5 Summary of synthetic anomaly study

• FSD provides the best detection for DDoS attacks with many small flows.

• While destination port and destination address can detect bandwidth and DDoS floods, the

attack magnitudes they detect are large enough to be detected with simple volume based

detection.

• Single scanners are very hard to detect using entropy based metrics. Even with a scan rate

more than 30 hosts per second (scanning a class B subnet in a half hour) the scan cannot be

detected by entropy based anomaly detection.

• Port and address distributions are ineffective for detecting scanning anomalies. FSD and

in-degree are the most promising metrics for scan/worm detection.

34

Chapter 4

Datapository Anomaly Detection Testbed

In this section, we present the Datapository Anomaly Detection Testbed (DP-ADT), a frame-

work and storage facility for analyzing and developing detection methods, generating and labeling

anomalies, and analyzing traffic features with user provided traffic sets or publicly available traf-

fic sets in the Datapository database. The framework includes the detection methods, synthetic

anomalies, and traffic analysis tools used to complete this work. Making the framework publicly

available not only allows others to perform a similar study, it also allows users to expand the

framework by adding newly proposed detection methods, traffic features, or synthetic anomalies.

4.1 Architecture

DP-ADT is constructed using a two-level architecture: a PostgreSQL [24] backend and Ruby [27]

frontend. The PostgreSQL backend provides structured storage for the traffic and resulting meta

data (e.g., entropy values, labels, deviation scores), as well as simplifies the computation of traffic

features and generation of synthetic anomalies. The Ruby frontend provides the user a powerful

and modular environment to develop and evaluate detection methods, label anomalies, generate

synthetic anomalies, and create new functionality using provided core methods.

4.1.1 PostgreSQL Backend

The database structure used for DP-ADT is shown in Figure 4.1. The basic flow information is

stored in two tables: intervals and flows. As all major auditing tools split traffic into intervals,

the top most intervals table keeps track of the details of the intervals. The intervals table is also

flexible to caching information in the future, such as the number of inbound or outbound flows.

This table is referenced by several other tables as entropy values, deviation scores, and alarms

belong to intervals and not flows. The flows table stores the raw flow information, the interval

the flow belongs to, and a unique (per interval) flow identifier for labeling flows. IP addresses are

stored in integer format as PostgreSQL has no unsigned type.

The flows table is partitioned by interval with consistency checks to ensure all flows belong

within the interval according to timestamp. Partitioning the flows table is essential to the perfor-

35

FLOWS

 interval: timestamp {PK}{FK}

 flow_id: integer {PK}

 start_time: date

 finish_time: date

 protocol: integer

 src_ip: integer

 dst_ip: integer

 src_port: integer

 dst_port: integer

 src_packets: integer

 dst_packets: integer

 src_bytes: integer

 dst_bytes: integer

 state: text

 dir_unknown: bool

INTERVALS

 interval: timestamp {PK}

 epoch: integer

 filename: text

1..1

0..*

INTERVAL_STATS

 interval: timestamp {PK,FK}

 metric: integer {PK,FK}

 entropy: real

 sdev_score: real

 wavelet_score: real

1..1

0..*

METRICS

 metric: integer {PK}

 name: text

1..1

0..*

INTERVAL_ALARMS

 interval: timestamp {PK,FK}

 metric: integer {PK,FK}

 alarm_type: integer {PK,FK}

1..1

0..*

1..1

0..*

ALARMS

 alarm_type: integer {PK}

 name: text

0..*

1..1

ANOMALIES

 type: integer {PK}

 description: text

LABELS

 label_id: INTEGER {PK}

 type: integer {FK}

 description: text

LABELED_FLOWS

 label_id: integer {FK}

 interval: timestamp {FK}

 flow_id: integer {FK}

1..1

0..*

0..*

1..1
1..1

1..*

1..*

1..1

Figure 4.1: Database structure for DP-ADT.

36

mance of the framework. Given that almost all queries are run on single intervals, partitioning the

flows by interval provides the greatest performance.

The database also supports caching of information through the tables interval stats and in-

terval alarms which is crucial to the performance of the testbed. The tradeoffs of caching this

information is discussed in Section 4.1.3. However, the interval stats table stores cached statistics

that are representative of an interval, such as entropy and deviation scores. As each traffic feature

will generate different entropy values and deviation scores per interval, a metric value is stored

with each set of statistics. The metrics are stored in the metrics table, which is also flexible to new

traffic features.

Alarm caching is achieved in the database using the tables alarms and interval alarms. The

alarms table stores the different alarm types such as wavelet-3, which would be alarms generated

using wavelet detection and a threshold α = 3. The interval alarms table stores the cached alarms

for intervals based on the metric and alarm type.

Storing labels is done through the anomalies, labels, and labeled flows tables. The anomalies

table stores anomaly types, such as inbound worm activity. As anomaly events typically consist

of multiple flows, the labeled flows table references the flows which belong to an anomaly. Each

labeled anomaly is stored in the labels table and has an associated anomaly type and an optional

user description such as: a local intranet host flooding an external host. The details of labeling

anomalies is further discussed in Section 4.2.3.

4.1.2 Ruby Frontend

The Ruby frontend provides an environment with core methods to interface to the PostgreSQL

backend and also provides the flexibility of user defined methods to expand the functionality of the

testbed. Ruby is a powerful object-oriented programming language which the core functionality is

written in, independent of the underlying database. This allows the framework of the testbed to be

reused on other databases and keeps compatibility in the event of a database change.

Interfacing with the backend is done using the ruby-postgres library [28] which provides meth-

ods for connecting to the backend and executing queries. Queries are written in SQL and encap-

sulated in a Ruby string, which is sent to the backend for execution. Generating the queries using

Ruby strings also makes dynamic queries extremely simple, which when done in PostgreSQL

would require an EXECUTE statement with complex and rather unreadable plpgsql code.

The results of the queries are returned to the Ruby environment as a two dimensional array,

where the first dimension represents a row in the results and the second dimension represents the

column. Errors are also reported by the library. After the results are returned, they can be easily

manipulated and used to generate additional queries.

4.1.3 Caching

Caching is seen in the traffic analysis and anomaly detection components of DP-ADT to increase

the performance and usability of the testbed. A value is cached if it is unchanging, used repeatedly,

requires significant computation, and caching it would not incur large storage overhead. As an

example, the entropy of an interval and metric does not change over time, is used several times in

37

anomaly detection, takes on the order of hours to compute for a month long trace, and caching the

values for a month long trace requires under 1 megabyte of storage. Therefore, entropy values are

cached using the interval stats table.

Although deviation scores and alarms typically only take on the order of seconds to generate

after computing entropy, they are used repeatedly and considered historic with the data. These

values are also often studied with labels which are stored by DP-ADT and can be used in future

studies of the traffic trace without the need for users to recompute the values.

Values which are not cached are the traffic feature statistics (e.g., port X sourced Y packets)

due to the amount of storage required to cache them. Although the traffic feature statistics are

arguably the greatest computational bottleneck in the testbed, they are rarely used more than once.

The traffic feature statistics are used once for entropy computation and only used again if manual

labeling on an interval is done. Considering manual labeling typically occurs on less than 5% of

data points, will not occur in all data sets (those already labeled), and requires gigabytes of storage

overhead, these values are not cached by DP-ADT. Furthermore, during labeling these results can

be temporarily cached through variables in the Ruby environment.

4.1.4 Modularity

A goal in the design of DP-ADT is modularity in the Ruby frontend. Individual methods provide

minimal and simple functionality that when combined perform more complex tasks. This increases

the re-usability of many of the methods for different tasks. As an example, the raw traffic statistic

methods discussed in Section 4.2.1 are combined with the entropy methods to compute normalized

entropy. However, these raw traffic statistics are also used in manual labeling and traffic analysis.

DP-ADT provides a set of core methods which provide simple functionality and are used in

nearly all components. The goal of these methods is to provide basic building blocks for more

complex functionality. Examples of these methods are get metrics() and get all intervals(), which

retrieve all available metrics and the timestamps of all intervals respectively. When these methods

are combined, the entropy of all metrics and intervals can be computed and cached:

get_metrics().each do |id,metric|

get_all_intervals().each do |i,e|

entropy = compute_entropy(i, metric)

cache_entropy(i, metric, entropy)

end

end

This goal should be kept in mind when expanding the functionality of DP-ADT. A subset of

functionality should be removed from a method and placed in to a separate method if it can be used

in other aspects of the framework.

4.2 Component Design

In the following section, we discuss the design of the core components of DP-ADT: traffic analysis,

anomaly detection, labeling, and synthetic anomalies. The design of each component addresses

performance, storage, and flexibility.

38

4.2.1 Traffic Analysis

The design of the traffic analysis framework in DP-ADT follows the architecture: perform the

majority of computation on the backend where database queries simplify the process, and return

the results to the Ruby frontend where the results can be used for further in depth study. The traffic

analysis framework computes the raw traffic statistics (e.g., in-degree of host X , packets sourced

from port Y) on the backend whose results are returned by Ruby methods generating the queries,

and the rest of the functionality is written in Ruby.

Traffic Statistics: Computing the raw traffic statistics is done on the backend for simplicity and

performance. All traffic statistics can be generated using a single SQL query, rather than dozens

of lines of Ruby which takes over twice as long to run. This is a major benefit of keeping the raw

traffic flows in a database. As discussed in Section 4.1.3, these values are not cached. Although the

statistics are computed on the backend, Ruby methods are provided as a wrapper which generate

the queries and return the results. The interface design to these methods is to accept a mandatory

interval parameter to compute the aggregate statistics and an optional table name parameter which

is essential to the synthetic anomaly design, further discussed in Section 4.2.4. The default table is

the flows table.

Returning the results to the Ruby frontend allows the user to easily examine and study the

results in a more powerful environment where they can be temporarily cached. These methods

provide the functionality of the top-k labeling approach discussed in Section 3.4, which labels

most anomalies within minutes. To illustrate the simplicity of generating and analyzing the raw

traffic statistics with the use of the Ruby framework, we provide the following examples:

• Display the top 3 hosts in terms of in-degree:

irb> stats_addr_degree_in(‘‘2005-02-01 00:00:00’’).first(3).each {|h,d| puts ‘‘#{h} #{d}’’}

191102 5393

16085133 3855

180751 3309

• Display the out-degree of host 191102:

irb> stats_addr_degree_out(‘‘2005-02-01 00:00:00’’).assoc(191102).last

=> 62

• The number of hosts with an in-degree of 3:

irb> stats_degree_out(‘‘2005-02-01 00:00:00’’).assoc(3).last

=> 989

• The number of packets sourced from port 80:

irb> stats_ports_src(‘‘2005-02-01 00:00:00’’).assoc(80).last

=> 1769099

39

Computing and Caching Entropy: A goal of the framework design is to be modular, such that

simple methods can be reused and combined to perform more complex tasks on the frontend. This

is seen in computing and caching entropy values in DP-ADT. The methods used to generate raw

traffic statistics on the backend are reused to compute the normalized entropy on the frontend in

the following manner: entropy degree in(stats degree in(“2005-02-01 00:00:00”)). The returned

value is a float representation of the normalized entropy for the specified interval.

A second interface, which acts as a wrapper to computing entropy is provided, is simpler to

use and more readable: compute entropy(interval,metric). This ensures that as new metrics are

added to the framework the basic interface does not change and code remains compatible (e.g.,

the example given in Section 4.1.4). The method branches on the metric, computes the raw traffic

statistics on the backend, and then uses the returned values from the backend to compute the

entropy. Therefore, when a new metric is added a new branch must be added to this method to call

the correct raw statistic and entropy method.

DP-ADT is designed such that caching values is done just as easily as computing them. As

goals of the testbed are performance and re-usability, it is recommended that the entropy be cached.

Caching takes place in the interval stats table with interval and metric associations, as each interval

and metric pair has a unique entropy value. Using these two fields as the primary key ensures flex-

ibility as new metrics are introduced in to the framework, changes will not need to be made to the

database architecture. Caching entropy is done using cache entropy(interval,metric,value), as seen

in the example given in Section 4.1.4. Likewise, reading the cache is done using read entropy(interval,metric).

Correlating Data: Correlating data was used throughout our trace analysis to understand

the structure of traffic features and the feature overlap in the anomaly space. DP-ADT pro-

vides the correlate() method and the Ruby script gen correlations.rb to aid in data correlation.

The correlate(a1,a2) method is used in conjunction with the core methods, which takes two ar-

rays of arbitrary data as parameters and returns the correlation coefficient as a float. We provide

the example of correlating the entropy between source and destination addresses below to fur-

ther illustrate the simplicity of the frontend. The overlap of alarms between the metrics with a

wavelet threshold α = 3 could also be computed by replacing read entropy(i,“addr src”) with

read alarm(i,“addr src”,“wavelet3”) in the example.

a1=Array.new

a2=Array.new

get_all_intervals().each do |i,e|

a1.push(read_entropy(i,‘‘addr_src’’)

a1.push(read_entropy(i,‘‘addr_dst’’)

end

correlate(a1,a2)

To simplify pairwise correlation of metrics, DP-ADT provides the gen correlations.rb script

which will run multiple correlations and output in a table format. The details of the script and its

usage are provided in the DP-ADT wiki.

40

4.2.2 Anomaly Detection

A core component of DP-ADT is the anomaly detection capability. While DP-ADT currently pro-

vides wavelet detection and heuristic-threshold detection, both of which are described in Section

2.2, the framework is designed to support development and evaluation of new methods. By making

each detection method simple to run, and through the labeling of anomalies described in the next

section, DP-ADT creates an environment where detection methods can be compared and evaluated.

Detection Method Design: The design of the detection method framework is slightly different

than that of the general architecture. Detection methods need not be written in Ruby, they are

only required to have a standard Ruby interface. While Ruby provides a powerful frontend to the

testbed, it is not sufficient for many anomaly detection tasks. For example, while wavelet detection

only requires 25 lines of MATLAB [19], it would take a whole signal processing package to be

written in Ruby. It is suggested that R (GNU S) [25] and Octave [22] be used for development of

detection methods that require a heavy statistical components.

Regardless of the language, a Ruby method must exist for the detection method which acts as a

wrapper to the detection method. For example, the wavelet and threshold-based detection methods

take a hash with sortable keys representing the timestamps of the data, and returns a hash also

indexed by timestamp with deviation scores as values. This ensures that the detection methods

are easily accessible and compatible with the Ruby frontend. As an example, the current wavelet

detection method is written in MATLAB, which is invoked by a Ruby method and returns the

deviation scores to the frontend which can be cached:

entropy = Hash.new

get_all_intervals().each do |i,e|

entropy[i] = read_entropy(i,‘‘addr_dst’’)

end

dev_scores = detection_wavelet(entropy)

cache_deviations(‘‘wavelet_score’’, ‘‘addr_dst’’, dev_scores)

Details of all detection methods and the caching of their scores can be found in the DP-ADT

wiki. As seen in other examples, the get metrics() core method can be used to generate and cache

to deviation scores of all metrics.

Generating Alarms: Alarm generation is currently designed to be threshold based. Generating

alarms is done through the threshold alarms(dev scores, threshold) method which returns a hash

indexed by timestamp with binary values indicating alarm. The dev scores parameter is a hash

of deviation scores returned by a detection method and threshold is a float representation of the

detection threshold α. This does not prevent detection methods from generating their own series

of alarms based on parameters, it is only used as a post-processing method for threshold based

detection.

Caching alarms is done using cache alarms(alarm name, metric, alarms where alarm name is

the name for the alarm type in the alarms table and alarms is an alarm hash return by gen alarms().

We discuss the reason for caching alarms in detail within Section 4.1.3. If the alarm name and

values already exist, the alarm values will be updated. The alarm name will be inserted in the to

41

alarms table if it does not exist. To read the alarms for all metrics or a specific metric during a

specific interval, the read all alarms(interval, alarm name) method can be used. The return type

is a hash indexed by metric name with binary alarm values for the specified interval.

4.2.3 Labeling Anomalies

Labeled anomalies provide detailed insight on the detection capabilities of methods and metrics.

DP-ADT is designed to support fully labeled data and the labeling of previously unlabeled data

which provides insight in to false positive and negative rates of the detection methods. As more

anomaly detection studies label previously unlabeled traffic sets, the labels will become accu-

rate for determining false positive and negative rates on originally unlabeled data. The DP-ADT

labeling framework is designed to support user descriptions, associations with flows, full label

searching, and the extraction of labeled flows for in-depth study or synthetic anomaly generation.

Labeling and Typing: Anomalies are inserted in to the database referencing three types data:

a description, flows, and an anomaly type. These three sets of data allow for detailed searching and

studies of anomalies. The anomaly type groups all anomalies in to classes such as inbound worm

activity, outbound bandwidth flood, or inbound DDoS attack. Requiring a class on anomalies

allows users of DP-ADT to find specific anomaly types throughout all datasets. This is a key

feature which allows users to perform an in-depth study on one specific anomaly type or extract

specific anomalies and insert them as synthetic anomalies in other datasets for greater anomaly

event coverage during a detection study. If an appropriate anomaly type does not exist during

insertion, a new class can be created which ensures flexibility as new anomalies are discovered.

Anomaly classes are not meant to be specific, such as slammer worm. This would make typing

anomalies difficult, as there are thousands of anomaly variations. When inserting an anomaly, the

user is prompted for a description of the anomaly which provides an additional level of detail which

can also be searched through. These descriptions should provide details of the specific event, such

as the hosts involved, the type of worm, and why it is believed to belong to the specific anomaly

class. Descriptions such as those provided in the detailed in-depth anomaly study in Section 3.4

are appropriate. All though extracting the associated flows with the anomaly can often provide this

same information, it allows users to quickly find details of an anomaly.

Label Searching: Searching for anomalies can now take place in a two level hierarchy where

users can search based on types and descriptions. Searching based on types is done using the

unique type ID assigned and stored in the anomalies table. Description searching is done using

keywords with the search labels or() and search labels and() methods, which search descriptions

using a logical or or and on the set of keywords. An optional anomaly type can be provided as a

second parameter to only keyword search within a specific type. The following are examples of

searching labels:

irb> print_labels(search_labels_type(9))

Label: 1

Type: outbound alpha flow

Interval Span: 2

42

Attack flows: 4

Description:

- increased traffic on port 80 (magnitude larger than normal)

- destined to the single host: 402737628 (internet)

- 4 flow sizes > 755191 packets

- A single Intranet hosts generate all of this additional traffic: 179858

- All traffic is UDP

irb> search_labels_or(‘‘InTrAnet slaMMer’’).each {|l| print_labels(get_label(l))}

Label: 1

Type: outbound alpha flow

Interval Span: 2

Attack flows: 4

Description:

- increased traffic on port 80 (magnitude larger than normal)

- destined to the single host: 402737628 (internet)

- 4 flow sizes > 755191 packets

- A single Intranet hosts generate all of this additional traffic: 179858

- All traffic is UDP

Label: 2

Attack: outbound worm activity

Interval Span: 1

Attack flows: 5

Description:

- slammer worm activity from multiple internal hosts

- external hosts seem to be chosen randomly

- scan rate seems to be lower than 10 hosts per second

- more than 40 local hosts participating

Extracting Labeled Flows: The ability to extract labeled flows allows for in-depth studies at

the flow level of anomaly types and synthetic insertion in to other datasets for detection studies. It

is often that anomaly events in historical traffic sets will not cover all anomaly types, preventing

detection studies on specific anomaly types within that traffic set. By allowing for extracting of

labeled flows for synthetic anomaly generation, we provide the ability to insert real anomalous

flows in to other datasets for studies.

The design of labeled anomalies to reference interval and flow id fields in the flows table allows

for easy extraction of labeled flows on the backend. The flows are then returned to the Ruby

frontend where they can be studied in-depth or inserted in to synthetic flow tables using synthetic

anomaly methods, further described in the next section and the DP-ADT wiki.

4.2.4 Synthetic Anomalies

Synthetic anomalies can provide a deeper understanding in to the detection capabilities of methods

and metrics through generation and control of the magnitude of the anomaly. The Ruby frontend

and PostgreSQL backend create a powerful environment for creating and generating synthetic

anomalies through SQL queries. We have found that synthetic anomalies are accurately modeled

in 2-3 lines of Ruby and a single SQL query using generate series() and random(). The framework

simplifies modeling of anomalies, allows labeled flows to be used in synthetic anomaly generation,

and provides an environment where multi-dimensional anomaly spaces are possible.

43

Synthetic Architecture: A key problem that needs to be addressed when generating synthetic

anomalies is that they are typically studied with background traffic such as user provided datasets,

however these datasets will not be writeable to most users to insert the anomalies. To address this

problem we create the notion of an anomaly table and leverage views to union the anomaly table

with the flows table. All subsequent queries, such as entropy computation, are performed on the

view using the optional table specific parameter in all traffic statistic methods. Not only does this

address the access control problem, but it also allows users to easily study the traffic with and

without the anomaly, without having to delete the synthetic flows. For example, after the synthetic

flows are inserted in an anomaly table and a view is created to union it with the flows table, the

user can examine the top five source ports with and without the anomaly as follows:

stats_ports_src(‘‘2005-02-01 00:00:00’’).first(5) # without anomaly

stats_ports_src(‘‘2005-02-01 00:00:00’’, ‘‘anomalies’’).first(5) # with anomaly

Another problem we address using the anomaly table is performance ensuring consistency.

Without the anomaly table, the synthetic flows would need to be generated and inserted in to

the flows table carrying a mark to ensure they can be accurately removed. This would incur an

additional field in the flows table, increasing the storage overhead of the system. Given the smallest

representation in PostgreSQL is a 1 byte boolean, the 2.5 billion flow traffic set used in the trace

analysis would incur a 2GB overhead to support synthetic anomalies.

The anomaly table and view also simplifies averaging synthetic results. Without the anomaly

table, the flows must be moved from partition to partition in flows table in between computing each

result. This method increases the chances of inconsistency in the dataset, as one can easily lose

track of where anomalous flows are in the system. To move flows to a new interval for averaging,

their interval timestamps only need to be modified in the anomaly table, they are then interpreted

as existing in another partition and interval.

Modeling Synthetic Anomalies: Modeling synthetic anomalies is made simple through Ruby

and PostgreSQL. In the architecture, most models can exist solely in a single SQL query with a

Ruby wrapper. In SQL, the generate series() function allows multiple flows to be creating with

a single query, and using the random() function gives each flow variability (e.g., source port). To

demonstrate this, we present the most complex synthetic anomaly, multiple scanners:

def insert_ib_mnscan(anomaly_table, interval, scanners, subnet_start, subnet_end, scan_rate, scan_port)

num_flows=(scan_rate.to_i*300).to_i # convert scan rate in seconds to 5 min (interval size)

each scanner host will add num_flows flows, scanning random targets in the subnet

(1..scanners).each do |scanners|

pick a random scanner from the whole 2ˆ32 space

scanner=(-2147483648+rand() * (2147483648 + 2147483648)).to_i

conn.exec("

INSERT INTO #{anomaly_table}

SELECT

’#{interval}’, # interval

NULL, NULL, # start/end time

6, # protocol

44

#{scanner}, between(#{subnet_start},#{subnet_end}), # src/dst IP

between(1024,65535), #{scan_port}, # src/dst port

1+resp, resp, # src/dst packets

57+(57*resp), 57*resp, # src/dst bytes

’CON’, false # connection info

FROM

generate_series(1,#{num_flows}), # generate num_flows

FLOOR(.10+random()) AS resp # response packet?

;")

end

end

In the most complex case, the synthetic anomaly is generated in 3 lines of Ruby, and a single

SQL statement. The parameters allow the user to specify the interval to which anomaly will belong,

the number of scanners, the start and end of the “victim” subnet, a scan rate (scans/sec), and a scan

port.

As the scan rate is in scans per second and the interval size is 300 seconds (5 minutes), given

that each scan is a single flow, we generate the number of flows based on the rate. Then, each

scanner whose address is selected randomly in the whole Internet space, will insert num flows to

the given interval. The generate series() function is used to produce num flows in the database

with a single query, and the random() function is used to give each flow variability. The between()

function is DP-ADT SQL defined to produce a random number between the first and second pa-

rameters. Using this, we generate a random destination IP within the specified subnet. The source

port is chosen randomly between 1024 and 65535, and the scan port is user specified and fixed.

The model produces a 10% chance of response from the victim of the scan, which is generated in

the last line of SQL as resp. Therefore, the source and destination packets will be 1 and 0, or 2 and

1, depending on the response decision for the given flow. With 57 byte packets, the proper byte

counts are also generated.

The example illustrates the simplicity of modeling synthetic anomalies, even in the most com-

plex case of the anomalies presented in Section 3.6.

4.3 Summary of DP-ADT

• The PostgreSQL backend simplifies raw traffic statistics, synthetic anomaly generation, and

provides structured storage of flows and meta-data.

• The Ruby frontend provides a powerful and modular environment in which the majority of

the framework is written in.

• Caching entropy, deviation scores, and alarms increases the performance and usability of the

testbed with a very small amount of storage overhead.

• DP-ADT provides a framework to develop and test new detection methods, independent of

the language the detection method is written in.

• The framework for labeling anomalies takes labeled data and new labels for previously un-

labeled data. Anomaly types, user descriptions, type and description searching, and asso-

45

ciations with flows allows provides the user a powerful environment for in-depth anomaly

studies and synthetic anomaly generation.

• Synthetic anomalies can be easily generated and safely maintained in a database environ-

ment. Most anomalies can be generated using single SQL statements and 2-3 lines of Ruby.

46

Chapter 5

Related Work

Network anomaly detection is a broad area of active research. Well known techniques for time-

series analysis include the use of wavelets [3], time-series forecasting [26], and other signal pro-

cessing techniques [32]. These techniques focus primarily on detecting deviations from an ex-

pected norm and are basic building blocks for several anomaly detection schemes.

The use of entropy and distributions of traffic features has recently received a lot of attention in

the research community. Feinstein et al. [6] consider the use of entropy of the distribution of source

addresses seen at a network ingress point for DDoS detection. Lakhina et al. [14] augment their

PCA framework with entropy based metrics and show that this detects anomalies that cannot be

identified using volume based analysis alone. These approaches show the promise of entropy-based

anomaly detection. Our work seeks to better understand the selection of traffic feature distributions

for entropy based anomaly detection. Since worm payloads contain common substrings that appear

frequently, Karamcheti et al. [9] use distributional analysis over packet contents to detect malicious

behaviors. We focus primarily on traffic features that can be inferred from flow level information.

In a much broader context, many traffic monitoring and intrusion detection applications use

entropy as a measure of information. Lee and Xiang [16] propose information-theoretic measures

for intrusion detection. Entropy has also been used in other contexts in network diagnosis in auto-

matically clustering traffic patterns [36] and for analyzing the effectiveness of network monitoring

solutions [17]. Wagner et al. [34] propose using the entropy for fast detection of worm attacks by

evaluating the compressibility of flow data under worm attacks.

Many tools [33, 31] and generative models [11] attempt to synthetically replicate traffic struc-

ture in generating realistic traffic workloads for simulation and testing. The correlations we dis-

cover between the entropy values of the port and address distributions, both in the university dataset

and in the Internet2 dataset, may have additional implications for such studies that aim to under-

stand structural properties of IP traffic.

There has also been interest in specific algorithms for estimating distributional features at line-

rates. These include the work on identifying the flow size distribution [13], and recent work on

streaming algorithms for entropy computation [15]. In a related context, Brauckhoff et al. [4] eval-

uate how packet sampling affects the fidelity of entropy based anomaly detection, and show that

sampling does not affect the accuracy of detecting the Blaster worm [20]. In a separate study, Mai

et al. [18] suggest that packet sampling degrades performance significantly for anomaly detection.

47

These results are orthogonal to our measurement study as our focus is on better understanding the

selection of traffic feature distributions for entropy based anomaly detection.

Other research efforts in the space of fine-grained anomaly detection have focused on measure-

ments and analysis of backscatter and honeypot data [37], identifying heavy-hitters [5, 38], fast

scanner detection [8] etc. These techniques are complementary to entropy-based analysis of flow

level measurements.

48

Chapter 6

Conclusions

There is an evident need for fine-grained traffic metrics for anomaly detection and other traffic

classification applications. Entropy-based metrics have been suggested as possible candidates to

fulfill this need. The goal of this measurement study was to better understand the anomaly detection

capabilities provided by different entropy based metrics.

We evaluated two classes of entropy based metrics: five based on flow header features and

two based on properties of end-host behavior. We find that the port and address distributions are

strongly correlated not only in their detection capabilities, but also in the raw values themselves.

We also observe that the behavioral metrics (in- and out-degree) and the flow size distribution

provide detection abilities that are distinct from other distributions. Using synthetically generated

anomalies further confirms that the port and address distributions have limited utility in anomaly

detection: they are ineffective for scanning anomalies, and the flood anomalies they detect are large

enough to show as volume anomalies.

Our results have two significant implications in the context of entropy-based anomaly detec-

tion. First, we should look beyond simple port and address based traffic distributions for fine-

grained anomaly detection. Second, we should consider sets of distributions that provide the great-

est benefit benefit when used in conjunction with each other. One direction of future work in this

context is to explore information-theoretic measures [12] to decide which sets of traffic features

are likely to provide the best detection capabilities.

49

50

Bibliography

[1] Snort. http://www.snort.org.

[2] Argus. http://qosient.com/argus/.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic anomalies. In Proc.

of IMW, 2002.

[4] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and M. May. Impact of traffic sampling on

anomaly detection metrics. In Proc. of ACM/USENIX IMC, 2006.

[5] C. Estan, S. Savage, and G. Varghese.

[6] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical Approaches to DDoS Attack

Detection and Response. In Proc. of DARPA Information Survivability Conference and Exposition,

2003.

[7] Internet2. http://www.internet2.edu.

[8] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection Using Sequential

Hypothesis Testing. In Proc. of the IEEE Symposium on Security and Privacy, 2004.

[9] V. Karamcheti, D. Geiger, Z. Kedem, and S. Muthukrishnan. Detecting malicious network traffic using

inverse distributions of packet contents. In Proc. of ACM SIGCOMM MineNet 2005, 2005.

[10] Kazaa. www.kazaa.com.

[11] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed Structure of Addresses in IP Traffic. In Proc. of

IMW, 2002.

[12] D. Koller and M. Sahami. Toward optimal feature selection. In Proc. of ICML, 1996.

[13] A. Kumar, M. Sung, J. Xu, and J. Wang. Data streaming algorithms for efficient and accurate estima-

tion of flow distribution. In Proc. of ACM SIGMETRICS, 2004.

[14] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions. In Proc. of

ACM SIGCOMM, 2005.

[15] A. Lall, V. Sekar, J. Xu, M. Ogihara, and H. Zhang. Data streaming algorithms for estimating entropy

of network traffic. In Proc. of ACM SIGMETRICS, 2006.

51

[16] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc. of IEEE Sym-

posium on Security and Privacy, 2001.

[17] Y. Liu, D. Towsley, T. Ye, and J. Bolot. An information-theoretic approach to network monitoring and

measurement. In Proc. of IMC, 2005.

[18] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is sampled data sufficient for anomaly detec-

tion. In Proc. of ACM/USENIX IMC, 2006.

[19] Matlab. http://www.mathworks.com/.

[20] J. Morrison. Blaster revisited. ACM Queue vol. 2 no. 4, June 2004.

[21] Cisco Netflow. http://www.cisco.com/warp/public/732/Tech/nmp/netflow/

index.shtml.

[22] Octave. http://www.gnu.org/software/octave/.

[23] P. Phaal, S. Panchen, and N. Mckee. InMon Corporation’s sFlow: A Method for Monitoring Traffic in

Switched and Routed Networks .

[24] Postgresql. http://www.postgresql.org/.

[25] The r project for statistical computing. http://www.r-project.org/.

[26] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and Y. Zhang. Experience in

Measuring Internet Backbone Traffic Variability:Models, Metrics, Measurements and Meaning. In

Proceedings of International Teletraffic Congress (ITC), 2003.

[27] Ruby programming language. http://www.ruby-lang.org/.

[28] Ruby postgresql libary. http://ruby.scripting.ca/postgres/.

[29] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and H. Zhang. LADS: Large-scale Automated

DDoS Detection System. In Proc. of USENIX ATC, 2006.

[30] C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,

July 1948.

[31] J. Sommers and P. Barford. Self-configuring network traffic generation, 2004.

[32] M. Thottan and C. Ji. Anomaly Detection in IP Networks. IEEE Trans. on Signal Processing,

51(8):2191–2204, Aug. 2003.

[33] K. Vishwanath and A. Vahdat. Realistic and responsive network traffic generation. In Proc. of ACM

SIGCOMM, 2006.

[34] A. Wagner and B. Plattner. Entropy Based Worm and Anomaly Detection in Fast IP Networks. In

14th IEEE International Workshops on Enabling Technologies, Infrastructures for Collaborative En-

terprises (WET ICE 2005), 2005.

52

[35] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving IP Address Anonymization:

Measurement-based Security Evaluation and New Cryptography-based Scheme. In Proc. of IEEE

ICNP, 2002.

[36] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet backbone traffic: Behavior models and

applications. In Proc. of ACM SIGCOMM, 2005.

[37] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global characteristics and prevalence.

In Proc. of ACM SIGMETRICS, 2003.

[38] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online detection of hierarchical heavy-hitters.

In Proc. of IMC, 2004.

53

